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curves are compared in Table I. The final results 
are as follows. 

[(CHa)1SiS]. [(CH8J2SiSJj 

Si-S, A. 2.18 ± 0 . 0 3 2.15 ± 0 . 0 3 
ZSSiS 105° 115° 
ZSiSSi 75° 110° 
ZCSiC 110° (assumed) 110° (assumed) 

TABLE I 

[(CH3)JSiS]2 [(CHj)1SiSJi 
Max. 

1 

2 

O 

4 

5 
5 ' 

6 

7 

8 

9 

10 

11 

Av. 
Av. 

Min. 

2 

3 

4 

.5 

6 

7 

8 

9 

Ii) 

11 

dev. 

qobsd. 

13.4 
17.1 
20.1 
23.1 
25.6 
28.7 
31.6 
34.7 
38.1 

43.2 
48.5 
53.0 
57.4 
61.7 
66.3 
70.8 
75.5 

«B/5obsd. 

(0.934) 
(1.027) 
1.009 
1.021 
1.003 
0.986 
0.989 
0.994 
1.005 

1.006 
0.988 
0.995 
0.993 
1.005 
1.004 
1.00.5 
1.003 

1.000 
± 0 . 0 0 8 

2B'/gobsd. 

(0.927) 
(0.958) 
1.009 
1.013 
0.996 

.984 

.977 

.997 

.998 

1.002 
0.994 
0.987 
0.989 
1.011 
1.004 
1.003 
1.006 

0.998 
± 0 . 0 0 8 

Sobsd. 

7.7 
10.4 
13.1 
16.6 
19.7 
22.6 
25.0 
27.5 
30.0 
33.4 
35.9 
39.2 
44.2 
48.3 
53.2 
57 .7 
62.7 
67.1 
72.7 
76.6 
81.0 
86.1 

?E/«obad. 

(0.934) 
(0.826) 
(0.938) 
(1.005) 

1.031 
1.017 
0.968 
0.981 
1.009 
1.008 
1.008 
1.026 
0.998 
1.009 
1.004 
1.000 
0.991 
1.010 
0.984 
1.003 
1.009 
1.007 

1.003 
± 0 . 0 1 1 

Introduction 
The theory of the dynamic double refraction in a 

sinusoidal electric field was developed by Peterlin 
and Stuart .2 Subsequently Benoit3 considered the 
birefringence produced by a rectangular electrical 
pulse acting on a dilute solution of rigid macromole-
cules. As a model for the macromolecule he chose 
an ellipsoid of revolution with a permanent dipole 
moment along the axis of revolution whose princi­
pal geometrical, optical and electrical axes coin-

(1) Public Health Service Research Fellow of the National Cancer 
Institute. 

(2) A. Peterlin and H. A. Stuart. "Hand und Jahrbuch der Chemis-
chen Physifc," Bd. 8, Abs. IB., Leipzig, 1943. 

(3) H. Benoit, Ann. Phys., 6, 561 (1951). 

The values 2.18 and 2.15 A., obtained for the 
bonded Si-S distance of these compounds, agree 
within the limits of error with the value of 2.15 A. 
given by Schomaker and Stevenson's rule.4 

The crystal structure of silicon disulfide was stud­
ied by Bussen, et a/.,6 who found t ha t it had a two-
dimensional fibrous structure composed of cyclic 
four-membered rings (Si-S)2. They obtained 2.14 
A. for the Si-S bond length and 100 and 80° for the 
bond angles of silicon and sulfur, respectively. Our 
values for the bond length and bond angles of the 
disilthiane are in comparatively good agreement 
with those of silicon disulfide; these data suggest 
t ha t the Si-S bond of silthianes is largely ionic, a 
characteristic which may be responsible for the 
ready cracking of trisilthiane to disilthiane. 

Kur i ta and Kondo,6 assuming the atomic polari­
zation of trisilthiane to be of the same magnitude 
as tha t of the corresponding oxygen compound, 
hexamethylcyclotrisiloxane, estimated the dipole 
moment oi trisilthiane as 1.03 D. As this large mo­
ment rules out a planar symmetrical structure similar 
to t ha t of trisiloxane, they suggest tha t trisilthiane 
has predominantly a chair configuration; their 
conclusion is consistent with the results of our elec­
tron diffraction study. 

This investigation was supported by the Grant-in-
Aid for Fundamenta l Scientific Research of the 
Ministry of Education. 

(4) V. Schomaker and D. P. Stevenson, THIS JOURNAL, 63, 37 
(1941). 

(5) W. Bussen, H. Fischer and E. Gruner, Naturwissenschaflen, 23, 
740 (1935). 

(6) Y. Kurita and M. Kondo, Bull. Chem. Soc. Japan, 27, 161 
(1954). 
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cided. His very thorough t rea tment of this sys­
tem has been used to interpret the electrical bire­
fringence of protein solutions.3 4 

Benoit 's model of a protein molecule can be im­
proved by removing the restriction tha t the dipole 
moment be along the axis of revolution and by in­
cluding the Kirkwood-Shumaker5 concept of the 
mobile proton contribution to the polarizability. 
Consideration of this model shows tha t electrical 
birefringence (Kerr effect) measurements, unlike 
dielectric dispersion,6 can be used to determine un­
ambiguously rotary diffusion coefficients for pro-

(4) I. Tinoco, Jr., THIS JOURNAL, 77, 3476 (1955). 
(5) J. G. Kirkwood and J. B. Shumaker, Proc. Natl. Acad. Set'., 38, 

855 (1952). 
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Benoit's theory of the dynamic electrical birefringence of rigid macromolecules under the action of a rectangular electrical 
pulse has been extended to include the effect of a transverse component of the permanent dipole moment, and the effective 
orienting field acting on the permanent dipole has been explicitly considered. The proton polarizability contribution to the 
induced dipole moment introduced by Kirkwood and Shumaker has also been considered. A new interpretation of Benoit's 
electrical birefringence measurements on nucleic acid has been made. 
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teins, and that both the mean permanent dipole 
moment and the fluctuating dipole moment due to 
proton migration can in principle be determined. 

Theory 
The birefringence of a solution of non-interacting 

rigid macromolecules under the action of a rectan­
gular electrical pulse will be considered. Benoit's 
model for the macromolecule will be used, except for 
the modifications mentioned previously. 

Consider a rigid ellipsoid of revolution with ro­
tary diffusion coefficients6 Gi and 62 = G3 for rota­
tion about the symmetry and transverse axes, re­
spectively. The components of the mean perma­
nent dipole moment along these axes are m and û2 
= /U3. The principal axes of polarizability (which 
lie along the geometrical axes) also define an ellip­
soid of revolution. The principal polarizabilities 
are a function of the frequency of the applied elec­
trical field; they are determined by the refractive 
indices «i, «2 = «3 at the optical frequencies of the 
incident light, and the permittivities ei, €2 = e3 at 
the lower frequencies comprising the Fourier 
spectrum of the applied electrical pulse. Both the 
refractive indices and the permittivities may show 
dispersion in their respective frequency ranges. 

The ellipsoid is immersed in a continuous me­
dium with refractive index «0 and permittivity 
(equal to the dielectric constant) «0- Its position 
with respect to a fixed external coordinate system 
is determined by the three Eulerian angles 6, x and 
<p. The angle between the direction of the homo­
geneous parallel electric field and the symmetry axis 
of the ellipsoid is 6; x measures the rotation about 
this axis; and <j> is the colatitude of this axis. 

Orientation.—The potential energy W of the 
ellipsoid in the electric field consists of a term linear 
in the electric field strength E and a quadratic 
term. The quadratic term is3 

W2 = (-1/2Mg1
0 cos2 B + g2° sinV)-E2 (1) 

v = vol. of ellipsoid 
g° = («i — eo)/[47r + (t\ — eo)ii/eo] = polarizability 

per unit vol. of ellipsoid 
Li = a form factor which depends only on the axial ratio of 

the ellipsoid; it is defined in references (2) and 
(3) 

i = 1 and 2 along the symmetry axis and transverse 
axes, respectively 

E = the external field strength. 
The linear term is 

Wi = -UnEnCOS B — H2Er2Sm 0(sin x — cos x) (2) 

If the dipole moment is assumed to be a point di­
pole situated at the center of symmetry of the el­
lipsoid,7 the orienting field acting on the dipole is9 

Eri = E/[I + (eei — e0)Li/4:T60], where ee,i. the 
electronic contribution to the permittivity, is equal 
to n\ extrapolated to infinite wave length. For a 
sphere with a permittivity of unity the orienting 
field reduces to the Onsager field.10 

(6) See Edsall's article in "The Proteins," Edited by H. Neurath and 
K. Bailey, Academic Press, Inc., New York, N. Y., 19S3, p. 668, for a 
discussion of the relation of rotary diffusion coefficients to the semi-
axes of the ellipsoid. 

(7) In a protein molecule the center of drag must be chosen for the 
center of the coordinate system defining the dipole moment.5'8 

(8) K. J. Mysels, J. Chem. Phys., 21, 201 (1953). 
(9) J. A. Stratton, "Electromagnetic Theory," McGraw-Hill Book 

Co., New York, N. Y., 1941, p. 212. 
(10) I,. Onsager, T H I S JOURNAL, 58, 1486 (1936). 

The distribution function f(9, x, t) of ellipsoids in 
the electric field is determined by the general dif­
fusion equation11,12 

Lf-%- -Qf (3) 

o Jo Jo j£i*nAi«dx<l* = l (6) 
k = Boltzmann constant 
T = absolute temperature 

The equation can be solved using the perturbation 
method of Kirkwood11 in which both the operator 
Q and the distribution function / are expanded in 
powers of the field strength. Only the first two 
terms in the expansion were considered in this work. 

/ = 1 + /<«£ + /»£* (7) 
Q = Q^E + Q^E* (8) 

The inhomogeneous differential equations obtained 
by equating the coefficients of powers of the field 
strength are then solved by expanding the distribu­
tion function in terms of the eigenfunctions i/-\ of 
the operator L. The eigenfunctions in this case 
are the spherical harmonics. 

Lf\ + M\ = 0 (9) 
/ = £ ax(t)M8.x) (10) 

To determine / completely only the boundary con­
ditions are needed. We shall consider / in two 
parts: (a) after the application of an electric field 
as a step function, (b) after the removal of the elec­
tric field. The boundary conditions are: (a) / = 
1 at t = 0, (b) / = any function/'(0, x) at t = 0. 

Birefringence.—The birefringence of the system 
of ellipsoids, obtained by applying the familiar 
formula, n2E = E + 4irP, is given by3 

„ _ ns =
 ni ~ n* = yfo ~ ̂  C2T C2T fr 

z * 2re0 8XK0 JO J o J o 

/ (3 COS2S - l)sin 9d8d<t>dx (11) 
Hi = refractive index in the direction of the electric field 
Mx = refractive index perpendicular to the electric field 
V = vol. fraction of ellipsoids in solution 
gi = g° except n\ is substituted for ei 

If the / obtained in the previous section is substi­
tuted in the equation, it is apparent (as (3 cos2 6 — 
1) is a spherical harmonic) that only one term in the 
expansion of / in spherical harmonics contributes to 
the integral. The birefringence is thus 
(a) Rise of the birefringence 
An - Wz - nx = (27r/15)(gi - g2)F£2{pi - pi + q 

- ( 3 / 2 ) pte-w + [66,/(Se2 - eOl^je-tei+ei)! 
+ [Pi/2 + p2 - q - 6G2£2/(5e2 ~ O1)Ie-W*') 

Pi = (M'i)V(*r)2 i = 1 or 2 
M'i = Mi/[1 + (e*i - eo)X;/47reo] 

2 = v(g? - g2)/kT = induced dipole term (12) 
An(t — oo) = (27r/15)(g! - g2)VEKpi - p2 + q) = 

BXE2 (13) 
B = Kerr constant 
X = wave length of light (in vacuo) used 

(11) J. G. Kirkwood, / . Polymer Set., 12, 1 (1953). 
(12) F. Perrin, / . phys., 5, 497 (1934). 
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(b) Decay of the birefringence 
An = Araoe-se*' (14) 

Atio = birefringence at zero time 

The decay of the birefringence equation is the 
same as obtained by Benoit. As the electrical field 
is not acting on the system during this time, the 
birefringence must be independent of the electrical 
properties of the ellipsoids. 

If p2 is set equal to zero, the rise of the birefrin­
gence equation reduces to tha t of Benoit, bu t with 
the important difference tha t what he calls n is ac­
tually equal to y,' the apparent dipole moment in the 
solution and not the dipole moment of the protein. 

Discussion 
Although the general equation for the rise of the 

birefringence looks unmanageable, in practice a few 
simplifying approximations can be made. The ro­
ta ry diffusion coefficients are either approximately 
equal to each other (as in oblate ellipsoids or 
spheres) or else 0i > > B2 (as in prolate ellipsoids). 
In either case the rise of the birefringence depends 
on t ime only through Q2 which is obtained from the 
decay of the birefringence. To determine the molec­
ular parameters from the experimental birefring­
ence curve13 obtained on application of the electri­
cal pulse the rise equation can be used in the follow­
ing forms 
9j = G2 

An = _ Zpe-™>> (0 - 2)e~6e2> 
Ana 2(0 + 1) + 2(<3 + 1) ( l o ) 

„ _ ft - P-i 
S 

Aria, — birefringence finally attained on application of an 
electrical field 

Gi > 20 B2, i.e., axial ratio ^ 10 
A_«_ _ _ 3« i e - 2 w r3«i - 20 - 2"Ie-6Q'' 

AY00 2(0 + I ) + L 2 (3 + I ) J U b ) 

For a prolate ellipsoid with 20 > 81/82 > 1 an es­
timated value of this ratio can be used to give a 
suitable expression for An/An^. If q is not a func­
tion of time, i.e., the protonic contribution is negli­
gible, 0 and a; can be obtained from the shape of the 
birefringence curve and the measured Kerr constant 
if gi — J?2i the optical factor, is known. This factor 
can be obtained either from flow birefringence 
measurements, depolarization of scattered light, 
or from the Kerr effect measurements themselves 
by varying the refractive index of the solvent. Fur­
thermore if the protonic contribution is negligible, 
then for a protein solution in water e; < < e0 and q 
will depend only on the dielectric constant of the 
solvent so tha t fi[ and m can be determined. A short 
table showing the variation of Mi'/ Mi for this case is 
included to indicate the error tha t occurs when one 
neglects the difference between the external field 
and the orienting field. 

Axial ratio p 
(P > 1 for a prolate ellipsoid) Mi'/Mi Mt'/MI 

0.01 °° 1 
0.1 8 1.1 
1 1.5 1.5 

10 1 2 
100 1 2 

(13) The experimental techniques used in measuring the bire­
fringence are discussed fully in reference 3. 

With a protonic contribution6 to the polariza-
bility of the ellipsoid, q will be time dependent. If 
we assume a single relaxation t ime is necessary to 
describe the time dependence, q(f) may be written as 

2 « = So + ( S P ) ( I ~ e~"r) (17) 

q„ = electronic contribution to the induced dipole 
moment 

2i, = protonic contribution to the induced dipole moment 

The relaxation t ime r is a function of the transla-
tional diffusion coefficient of the protons on the pro­
tein surface and the size and shape of the molecule. 
Substitution of this expression into the equation for 
the rise of the birefringence shows tha t in general it 
will be very difficult to separate all the parameters. 
But if <?p is very large, i.e., the induced dipole due to 
proton migration is the only important orienting 
factor, then the general equation reduces to 

-^L = i — g-'/r — e-692< -i- c-d/T+eei)f (18) 
An00 

and both r and qp can be determined I t should be 
pointed out that qv is a measure of the anisotropy 
of proton polarization and not the average proton 
polarization as calculated by Kirkwood.6 

Application.—A new interpretation of some Kerr 
effect measurements of Benoit8 can now be made 
using the preceding equations. Benoit gives a 
value of (B/c)c-* o = 9.5 cm.4 v o l t - 2 g . - 1 as the in­
trinsic Kerr coefficient of a sample of thymonucleic 
acid which had an average length (calculated from 
the rotary diffusion coefficient) of about 3,200 A. 
and therefore corresponded to a molecular weight 
of about1 4 320,000. From the flow birefringence 
measurement of Schwander and Cerf14 on thymonu­
cleic acid a value of gi — g2 = — I X 1 0 - 2 can be 
estimated.15 This value is a very approximate one 
as Schwander's measurements were made in salt 
solutions containing varying amounts of glycerol 
and a rough extrapolation had to be made to esti­
mate the desired value. The two data allow one to 
calculate (P1 — p% + q) equal to —1.3 if an average 
value of 5000 A. is used for the wave length of white 
light. 

On application of a rectangular electrical pulse, 
Benoit found tha t the rise of the birefringence was 
symmetrical to the decay of the birefringence, i.e., 
for a monodisperse system An/An^ = 1 — e~6e,(. 
He interpreted this as indicating the nucleic acid 
was oriented only by an induced dipole mechanism. 

A new interpretation is obtained by comparing 
the rise curve with the preceding equations. I t is 
seen first t ha t the protonic polarization is not sig­
nificant so equation 16 can be used. The possibili­
ties are therefore a\ = 0, ai = a2 = 0, or «2 —*• co . 
In all cases <x\ = pi/q can be neglected. The in­
duced dipole term q can be calculated from the 
axial ratio (p > 100) and the partial specific vol­
ume (v = 0.55) le of thymonucleic acid, and the di­
electric constant of water (e0 = 80); a value of q = 
4.G X 10~6 is obtained. Both q and pi are therefore 
negligible compared to pi which is equal to 1.3. 
The magnitude of the transverse dipole moment ^2 

is thus calculated to be 22,600 D. 

(14) H. Schwander and R. Cerf, Heh. Chim. Acta, 34, 436 (1951), 
(1.5) H. A. Scheraga and R. Cerf, Chem. Revs., 51, 256 (1051). 
(16) R. Cecil and A. G. Ogsten, J. Chem. Sac, 1382 (194S). 
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Dielectric dispersion measurements of Jungner 
and Jungner17 on thymonucleic acid show that the 
component of the dipole moment along the long 
axis is zero and that the transverse component is 
directly proportional to the molecular weight. For 
a sample with a molecular weight equal to that of 
Benoit's, they give a value of the transverse dipole 

(17) A. Jungner and I. Jungner, Ada Chem. Scand., 6, 1391 (1952). 

moment, calculated according to Kirkwood,18 of 
20,800 D. This is in very satisfactory agreement. 
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In order to contribute information concerning the relative electronegativities of the Group IVB elements, the ionic dis­
sociation and degree of hydrolysis of dimethylgermanium dichloride in water have been investigated. Comparison of the 
results with those for dimethyltin dichloride shows that germanium has a surprisingly high electronegativity, in keeping 
with recent predictions and with other experimental evidence. Some metathetic reactions of dimethylgermanium dichloride 
in aqueous solution also are described. 

There is some controversy concerning the rela­
tive electronegativities of the Group IV elements 
silicon, germanium, tin and lead. In particular, 
Sanderson2 shows a regression of metallic character 
for the first period of eighteen elements, leading to 
the values Si 2.6, Ge 3.6, Sn 3.1, and Pb 3.7. Older 
sources indicate3 the more uniform values Si 1.8, 
Ge 1.7, and Sn 1.7. Chemical evidence obtained 
in the course of experiments on these elements in 
this Laboratory has indicated that germanium does 
indeed exhibit an electronegativity considerably 
higher than that of silicon or of tin.4 Further con­
clusions are possible through study of the behavior 
of the R2M+ + ions, such as the dimethyltin ion 
(CH3)2Sn++.5~7 We are concerned here with the 
electrolytic dissociation, degree of hydrolysis, and 
metathetic ionic reactions of dimethylgermanium 
dichloride, particularly as they relate to the corre­
sponding properties of dimethyltin dichloride. 

Experimental 
Dissociation and Hydrolysis.—Dimethylgermanium di­

chloride was prepared from germanium as previously de­
scribed8 and was purified by distillation. Chlorine was de­
termined by titration with alcoholic KOH .9 Dilute solutions 
were prepared and used for the cryoscopic determination of 
the van ' t Hoff i factor and the pH. The results are sum­
marized in Table I . 

A solution of 1.2479 g. of (CHa)2GeCl2 in 125.0 ml. of 
water was titrated with 0.0976 N NaOH, measuring the 
pH with a Beckman meter. The result of 125 observations 
during the titration is given on curve A of Fig. 1, in which 
the equivalents of base per equivalent of (CHs)2GeCl2 are 

(1) Natvar Fellow at Harvard University, 1954-1955. 
(2) R. T. Sanderson, J. Chem. Ed., 31, 238 (1954); 32, 140 (1955). 
(3) L. Pauling, "The Nature of the Chemical Bond," Cornell Uni­

versity Press, Ithaca, N. Y., 2nd Ed., 1948, p. 64. 
(4) See, for example, the reduction of Ge-Br to Ge-H by zinc dust 

and hydrochloric acid, impossible with Si or Sn and reminiscent of As: 
R. West, T H I S JOURNAL, 76, 6080 (1953). 

(5) E. G. Rochow and D. Seyferth, ibid., 75, 2877 (1953). 
(6) E. G. Rochow, D. Seyferth and A. C. Smith ibid., 75, 3099 

(1953). 
(7) K. Gingold, E. G. Rochow, D. Seyferth, A. C. Smith and R. 

West, ibid., 74, 6306 (1952). 
(8) E. G. Rochow, ibid., 69, 1729 (1947). 
(9) E. G. Rochow, "Introduction to the Chemistry of the Silicones," 

John Wiley and Sons, Inc., New York, N. Y., 1951, p. 165. 

TABLE I 

AQUEOUS SOLUTIONS OF (CH3) 2GeCl2 

Molality 0.0760 0.0350 0.0216 0.0145 0.00478 0.0019 
i factor 5.01 5.03 5.21 5.19 
Obsd. pK 1.02 1.20 1.32 1.50 2.11 2.37 
Calcd.^H 0.82 1.16 1.37 1.54 2.03 2.42 

(see Discussion) 
" Large variations were encountered with these dilute 

solutions, but the average i was 5.0. 

plotted against pK. The^ results of titrating a 0.1016 TV 
solution of (CH3)2SnCl2 with base by the same technique 
(from ref. 5) are plotted on the same scale (curve B) for com­
parison. While precipitation of dimethyltin oxide occurred 
at approximately one equivalent of base per equivalent of 
(CH3)2SnCl2, in the present work no dimethylgermanium 
oxide precipitated at any point. 

/ 
i 

^ A 

Meq. Na O H / M e q . [CH 3 I 2 MCI2-

Fig. 1. 

Compounds of the Dimethylgermanium Cation.—When 
an acidified aqueous solution of (CH3)2GeCl2 is treated with 
hydrogen sulfide, a precipitate of white waxy dimethyl­
germanium sulfide forms at once.10 The possibility of simi­
lar reactions was studied as a rapid means of preparing new 
organogermanium compounds. Two methods were used: 
(1) (CH3)2GeCl2 was added to an aqueous solution of the 
desired anion and the product isolated by filtration or 
evaporation, or (2) an anion-exchange resin was treated 
with a solution containing the desired anion, washed with 
water, and then treated with a solution of (CHj)2GeCl2. 

(10) E. G. Rochow, THIS JOURNAL, 70, 1801 (1948). 


